
© 2021 Freestar

Event-Based Implementation
Last Modified on 02/27/2023 6:12 pm EST

Event-Based Implementation

Introduction

Introduction
If you are looking to call the ads outside of a normal page load, you will want to use our event-
based ads. There are many examples of use cases for this, including:

A user plays a game on the site and after it ends, the results appear in a popup window. While

loading the content in that popup, you can also load an ad there as well.

Articles/pages that use an infinite scroll event to start to show more content as the user scrolls.

On a site with videos and clips, when a user pauses the video or takes another action while on

the same page, you could call ads using this method.

If you want to take advantage of Lazy Loading ads, you can use this method to load the ads as

the events trigger. Most lazy loading functionality is built behind the scroll distance of the
user, so for example if the user scrolls within 500 pixels of where the ad would be loading, you
could set an event there to call it ahead of time so that it’s loaded when the user scrolls it in to
view. Note we also offer our dynamic in-content ads that have this functionality built-in
already. Talk to your account manager if you are interested in this product.

Freestar's code does not work with prototype.js, this will need to be removed from your site to

add Freestar.

Pubfig.js API
Freestar has exposed a few methods in our code for the publisher to be able to call ads around
events. Using the tabs in this document we define the methods exposed and what can be passed
through them for use on your website.

Freestar Queue

Freestar Queue
The Freestar queue lives on top of the googletag queue. Most publishers will be familiar with some
code from the GPT library that looks like this: googletag.cmd.push(); The queue is there so if the

© 2021 Freestar

Freestar library is not ready, code will get pushed into a queue so that when it is ready it can
process everything. Using our standard ad tag setup we do something similar where we push the
ad placements into an array and when our scripts are ready, our initCallback function fires and
sends the array to the ad server.

When doing event based ad loading, this helps eliminate errors in the console where scripts fire
before others are ready. Below is an example of how the Freestar queue looks.

freestar.queue.push(function() {
 // Do some code here
});

freestar.newAdSlots

freestar.newAdSlots
This method allows you to pass two arguments. The first, elements, should be formatted in an array
and each placement will be set up in an Object. You can pass multiple objects through the array as
you see fit. We recommend pushing each object to an array and calling newAdSlots only once per
page view. This allows the ads to be sent to the ad server in a single request and will help speed up
the ad serving process.

The second argument is for the channel, which is a configuration item that some publishers may
need to take advantage of. See the Channel Variable section for more information on this. The
channel argument is optional and does not need to be set if it’s not being used.

freestar.queue.push(function() {
 freestar.newAdSlots(elements, channel = null)
});

The element object has two required properties that need to be passed through and one optional
property. Take a look at the example below to see how this can be used. This is showing a call for
two ads on the page. The DIV’s already exist in this scenario, you can also write javascript to inject
the divs into the DOM if they don’t already exist on the page.

© 2021 Freestar

// A complete example showing all arguments being passed
freestar.queue.push(function() {
 freestar.newAdSlots([{
 placementName: 'myplacement_300x250_InContent',
 slotId: 'my-element-id',
 targeting: {
 foo: 'bar',
 bar: 'baz'
 }
 },{
 placementName: 'myplacement_300x250_InContent',
 slotId: 'my-element-id',
 targeting: {
 foo: 'bar',
 bar: 'baz',
 many: ['value1', 'value2']
 }
 }],
 "foobar");
}):

Below are the definitions of the keys in the elements object that is passed.

Key Name Type Required Definition

placementName String true

This comes from the tag provided by Freestar. This field
must match what is provided by Freestar for the ads to load.
Unlike slotId’s placementNames can be used more than
once on a page.

slotId String true
This is the Div ID on the page that you are trying to load the
ad into. This value must be unique and only called once on
the page.

targeting Object false

In the targeting object, you will pass a key and a value for
GAM to use for targeting. You can pass as many as needed
here, and you can make an array of strings if there is more
than one value needed to be passed.

The last thing passed in this method is the channel name/string. Normally this is set in the header,
but if you are navigating to a new section of the site without reloading the page, you will need a
way to set the channel to the proper path. More of this is explained in the Channel Variable section.

freestar.deleteAdSlots

© 2021 Freestar

freestar.deleteAdSlots
When an event occurs on the page without a full page refresh, you should also remove the ad from
the page if it’s no longer going to be visible. You can use the deleteAdSlots method to remove one
or more ads on the page. You can pass the string of the slotId you want to remove or you can pass
an array of those slotIds if you want to remove more than one ad. If you don’t pass anything, all ads
will be removed from the page. Below are some examples of how this can be used. This needs to
be called after the window.freestar object and window.freestar.queue array have been defined for
this to work correctly.

// Delete all ad slots on a page
freestar.queue.push(function() {
 freestar.deleteAdSlots();
});

// Delete one of the ad slots on the page based on the slotId
freestar.queue.push(function() {
 freestar.deleteAdSlots('ad_300x250_1');
});

// Delete two of the slots. Note to pass the strings in an Array
freestar.queue.push(function() {
 freestar.deleteAdSlots(['ad_728x90_1', 'ad_300x250_2']);
});

Pageview Tracker

Freestar Pageview Tracker

How to Track Virtual Page Views Through Pubfig
Pubfig version 4.6.0 +

Pubfig.js collects data values such as URL location which is then used in various tables. In order to
properly track data sites that are using Single Page Applications (SPAs), or sites with
slideshows/carousels that change URLs / URL parameters the publisher must take these new
actions to assure the accuracy of the collected data.

When the location and or URL is updated, the lifecycle of the DOM and or Window does not reload
the pubfig.js script. In order to address this, the publisher must invoke the freestar.trackPageview()
method. This will ensure that the new URL is stored and used throughout the data collection for
that page or view.

In order to fend off timing issues, the function must be invoked within the Freestar queue. e.g.:

© 2021 Freestar

// (1) new view / url state updated

// (2) upon completion of the view being mounted invocation of the trackPageview method within the queued method

freestar.queue.push(function(){
 freestar.trackPageview()
});

Reusing a Placement

Reusing a Placement On the Same Page
When using the newAdSlots method, you can use the same placementName over and over on a
page. That means that in an infinite scroll scenario, or if you are doing any other event-based ad
loading you won’t need Freestar to provide you with multiple placementNames to accomplish
loading more ads. However, if you choose to reuse the placementName, the reporting will not
break down the ads individually. Reporting will show just the placementName, so if you called it 4
times on a page you will see all of that data combined.

In order to get reporting down to the 4 times you called the ad, you will need 4 placementNames
from Freestar. It’s our recommendation that you do break the ads out so that you get the
reporting down to the placement level, but for some cases, it makes sense to just reuse it.

If you choose to reuse the same placementName on the page, then all you need to do is make the
slotId and div id unique. We recommend you make these the same as the placementName and
then just add an incremental number to the end making the slotid and idiv id match. You can write
a quick javascript for loop to increment that number and append it each time the ad is called. If
you need help, reach out to your Onboarding Specialist or Customer Service Manager.

Example Code
Note: Please use your site-specific ad-tags instead of the example below.

© 2021 Freestar

<!-- Tag ID: yoursite_incontent_leaderboard_10 -->
<div align="center" data-freestar-ad="__300x250 __970x250" id="yoursite_incontent_leaderboard_10">
<script data-cfasync="false" type="text/javascript">
 freestar.config.enabled_slots.push({
 placementName: "yoursite_incontent_leaderboard_10", slotId: "yoursite_incontent_leaderboard_10" });
 </script>

 <!-- Tag ID: yoursite_incontent_leaderboard_10_2 -->
<div align="center" data-freestar-ad="__300x250 __970x250" id="yoursite_incontent_leaderboard_10_2">
<script data-cfasync="false" type="text/javascript">
 freestar.config.enabled_slots.push({
 placementName: "yoursite_incontent_leaderboard_10", slotId: "yoursite_incontent_leaderboard_10_2" });
 </script>

 <!-- Tag ID: yoursite_incontent_leaderboard_10_3 -->
<div align="center" data-freestar-ad="__300x250 __970x250" id="yoursite_incontent_leaderboard_10_3">
<script data-cfasync="false" type="text/javascript">
 freestar.config.enabled_slots.push({
 placementName: "yoursite_incontent_leaderboard_10", slotId: "yoursite_incontent_leaderboard_10_3" });
 </script>

 <!-- Tag ID: yoursite_incontent_leaderboard_10_4 -->
<div align="center" data-freestar-ad="__300x250 __970x250" id="yoursite_incontent_leaderboard_10_4">
<script data-cfasync="false" type="text/javascript">
 freestar.config.enabled_slots.push({
 placementName: "yoursite_incontent_leaderboard_10", slotId: "yoursite_incontent_leaderboard_10_4" });
 </script>

